

Reg. No	. :	
15. Ft		

Seventh Semester B.Tech. Degree Examination, October 2014 (2008 Scheme) 08.704: REFRIGERATION AND AIR CONDITIONING (M)

Time: 3 Hours Max. Marks: 100

Instructions: 1) Use of Psychometric chart and refrigeration tables are permitted.

 Answer all questions from Part A. Each carries 4 marks. And one full question from each Module of Part B. Each carries 20 marks.

PART-A

- 1. Explain Bell-Coleman cycle refrigeration system with T-s plot.
- 2. With a neat sketch explain any one type of air craft refrigeration system.
- 3. Show with the help of a diagram, differentiate theoretical and actual vapour compression cycle.
- 4. Discuss briefly the drawbacks of simple vapour absorption cycle.
- 5. Explain briefly the different types of compressors used in refrigerating equipments.
- 6. Compare Aqua Ammonia system and Electrolux system.
- 7. Explain briefly the application of Vortex Tube Refrigeration.
- 8. State the characteristics of a good lubricant.
- 9. Explain the process in summer air conditioning.
- 10. Write briefly about air distribution for an air conditioning system.

PART-B

Module - I

- 11. An air cooling system for an aircraft cockpit operates on a simple cycle. The cockpit is maintained at 26°C. The ambient conditions are 0.35 bar and 20°C. The pressure ratio of the compressor is 4. The speed of aircraft is 1200 km/hour. The pressure of the air leaving the cooling turbine is 1.1 bar and that in the cockpit is 1.01325 bar. The cockpit cooling load is 50 KW. Determine the following.
 - 1) Stagnation pressure and temperature of air entering the compressor.
 - 2) Mass flow of the air circulated.
 - 3) Net power delivered by the engine to the refrigeration unit.
 - 4) COP of the system.
- 12. A refrigerant 12 vapour compression system operating at a condenser temperature of 35°C and at an evaporator temperature of 0°C develops 15 tones of refrigeration.

Using p-h diagram for R12 determine

- a) The mass flow of refrigerant circulated.
- b) Theoretical piston displacement of the compressor and piston displacement per ton of refrigeration.
 - c) The theoretical horse power of the compressor and horse power per ton of refrigeration.
- d) Heat rejected at the condenser.
 - e) The Carnot COP and actual COP of the cycle.

Module - II

- 13. Explain with a neat sketch the working of Lithium Bromide water vapour absorption system.
- 14. What would be the necessary bore and stroke of single acting four cylinder 350 rpm ammonia compressor working on simple saturation cycle between 35°C condenser and -15°C evaporator temperature and developing 15 tons of refrigeration? For compressor, ratio of stroke to bore =1 and volumetric efficiency 70%.

Module - III

- 15. a) Explain the processes in winter air conditioning with a neat diagram.
 - b) Air at 15°C DBT and 90% RH is to be brought to 35°C DBT and 22.5°C WBT with the help of winter air conditioner. If the humidified air comes out of the humidifier at 90% RH, draw the various process involved in a psychometric chart and find.
 - a) The temperature to which air should be pre heated and
 - b) Efficiency of air washer.
- a) Briefly describe following components of cooling load in an air conditioning system for building.
 - 1) Internal load
 - 2) Solar load
 - 3) Ventilation and infiltration
 - b) 0.2 m³ of air at 30°C and 60% RH is cooled to 22 °C DBT maintaining specific humidity constant.

Find:

- 1) Heat removed from the air
- 2) RH of cooled air
- 3) WBT of cooled air.

